CHROMATOGRAPHIC METHOD OF SEPARATION OF RADIONUCLIDE LUTETIUM-177, CARRIER FREE FROM MACRO-QUANTITIES OF YTTERBIUM

¹Akhmedov Zh. A, ²Usarov Z. O, ³Abdukayumov A. M, ⁴Rikhsiev A. Z, ⁵Sherov O. O State Enterprise "Radiopreparat" INP AS RUz, Tashkent

ABSTRACT

Currently, promising direction of development of modern oncology is a radionuclide therapy using radiopharmaceuticals sighting direction, ie the targeted effect on tumor tissue. For this purpose, suitable radionuclide 177 Lu, possessing optimal nuclear-physical characteristics with an average half-life ($T_{1/2}=6.7$ days); acceptable energy β -particles (maximum 0.5 MeV), which allows to destroy small tumors and metastasis without affecting the healthy tissues; concomitant soft γ -radiation with sufficient energy for imaging. Targeted exposure helps to get rid of neuroendocrine tumors, thyroid cancers, some types of brain cancer, and prostate cancer, and so on.

KEYWORDS: lutetium, ytterbium, carrier free, half-life, isotop, separation, radionuclide, Chromatographic method, irradiating, thermal neutron, nuclear reactor, nuclear reaction, ion-exchange resin, chromatographic column, HPLC, gradient.

I. INTRODUCTION

One of the reports at the final meeting of the authoritative Society for Nuclear Medicine and Molecular Imaging (SNMMI) [1] in 2019 was completely devoted to the use of targeted therapy with Lutetium-177-PSMA (PSMA-prostate-specific membrane antigen) in prostate cancer. [2]

Radiopharmaceuticals labeled with 177Lu radionuclide of high specific activity are used in radioimmunotherapy and are new generation drugs, which are, in most cases, labeled antibodies or peptides [3].

In this case, the labeling reaction, as a rule, is realized by means of bifunctional chelating agents (BPCA), which can bind to molecules of a biologically active compound on the one hand and, on the other hand, have chelating groups capable of binding metal cations.

E-ISSN NO:2349-0721

The concentrations of biologically active compounds in the composition of the radiopharmaceuticals are extremely small and amount to several micrograms. Therefore, to obtain a high yield in the labeling reaction, the initial solutions of radionuclides, in the ideal case, should not contain impurities of other elements and stable isotopes of the target radionuclide, i.e. a target radionuclide with a high specific activity is needed, namely in the case of 177 Lu more than 50 Ci / mg Lu on the day of receipt by the consumer.

Preparation of ¹⁷⁷Lu in a nuclear reactor

Radionuclide 177Lu can be obtained in two ways:

> Irradiation of starting material enriched in Lu-176 by nuclear reaction with neutrons from a nuclear reactor

$$^{176}Lu(n,\gamma)^{177}Lu$$
.

> Irradiation by neutrons of a nuclear reactor starting material containing Yb enriched in ¹⁷⁶Yb

$$^{176}Yb(n,\gamma)^{177}Yb \xrightarrow{\beta^-} ^{177}Lu$$
.

by nuclear reaction

One of the main disadvantages of the first method is the value of the specific activity of 177Lu, which is significantly lower than the theoretical one, which is proportional to the thermal neutron flux density. In addition, the formation of the "harmful" long-lived radionuclide 177m Lu (T1 / 2 = 160 days) is inevitable, the fraction (by activity) of which in 177 Lu can reach 3%. For the effective implementation of this scheme, a highly enriched 176 Lu and high-flow reactor (with a thermal neutron flux density of ~ 2-5 × 10 14 n / cm 2 s $^{-1}$) is required.[4]

When the second scheme is implemented for a neutron flux of any intensity, ¹⁷⁷Lu is obtained with a specific activity close to the theoretical specific activity. Thus, the production of ¹⁷⁷Lu using this scheme can be organized on the basis of any research nuclear reactor. To implement this scheme, enriched ytterbium and an express method for separating ¹⁷⁷Lu carrier free from the ytterbium target material are required.

Taking into account the advantages and disadvantages of both methods of obtaining ¹⁷⁷Lu, the more preferable in our case is the method of obtaining ¹⁷⁷Lu by irradiating ytterbium targets. In this case, the target ¹⁷⁷Lu is obtained carrier free, which can be purified and concentrated using radiochemical methods.

This work presents the results of experiments on the separation of carrier free amounts of ¹⁷⁷Lu from the target material of ytterbium by ion-exchange and extraction-chromatographic methods in a dynamic mode.

II. EXPERIMENTAL

The irradiated material was used as the ytterbium nitrate with a natural isotopic composition and ytterbium oxide enriched ytterbium-176 (99,8%) The samples were irradiated in vertical channels of the WWR-SM research reactor (INP AN RUz). The irradiation times of the samples were 48 and 120 effective hours of ytterbium nitrate and ytterbium oxide, respectively. The irradiated sample was kept for 24 hours to decay the activity of the short-lived radionuclide 177 Yb ($T_{1/2} = 1,911$ hours).

Reagents: All reagents used in this work were of the highest purity (unless otherwise stated).

Radiochemical procedures for the isolation, purification, and concentration of 177Lu were performed by extraction and ion exchange chromatography. As the extractant, in the experiments, it was used di-2-etilgeksilortofosfornaya acid (D2EHPA).

E-ISSN NO:2349-0721

Commercial D2EHPA was preliminarily purified from the mono fraction by the method described in [5]. As the carrier liquid extractant, in the case of an extraction chromatographic experiments was used a powder of tetrafluoroethylene FT(4) with particle size 400 mesh.

The solid extractant D2EHPK / FT (4) for extraction chromatography was prepared according to the procedure [5].

The ion-exchange resin was a DOWEX 50x8, 200-400 mesh, (Sigma Aldrich) cation-exchange resin in the H^+ form, which was converted into the NH_4^+ form by treatment with a 0,5 M NH_4CI solution. As the complexing agent was used alpha-hydroxyisobutyric acid (α -HIBA) (Sigma Aldrich).

The extraction chromatographic column had dimensions d=6 mm and H=500 mm, and in the case of ion exchange chromatography the dimensions of the columns were d=6 mm and H=750 mm; and d=10 mm and H=500 mm.

The process of ion exchange chromatography isocratic and gradient mode carried out by liquid chromatography on Gilson HPLC pumps 305. Measurement of medium of the solution was carried out on a Seven Easy pH meter. Measurements of the quantitative and qualitative activities of radionuclides were carried out on an ASPECT SU-03P gamma spectrometric device with a semiconductor Ge (Li) detector. Radionuclides were identified by their gamma lines.

III. RESULTS AND DISCUSSION

Figure 1 illustrates the extraction chromatographic separation of carier free 177Lu radionuclide from the Yb target material.

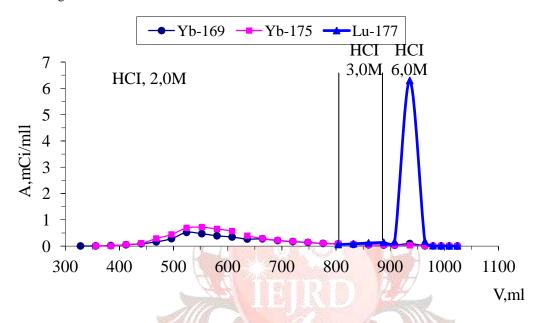


Fig. 1. Profile elution of ^{169,175}Yb and ¹⁷⁷Lu from a chromatographic column (D2EHPK/FT-4). C_{Yb} = 10 mg. Elution rate 1,0 ml/min.

As can be seen from the figure, the elution of ytterbium from a chromatographic column with a solid extractant of fluoroplastic (FT-4) impregnated on it with an extractant of di-2-ethylhexylphosphoric acid (Di-2-EHPA) was carried out by elution with 2,0 M HCI solution, at a rate of 1,0 ml / min with a volume of 800 ml. Elution of residual amounts of ytterbium with 3,0 M, HCl solution, volume 100 ml, and elution of lutetium-177 was carried out with 6,0 M HCl solution, volume 100 ml. In this case, the percentage of separation of non-relative amounts of ¹⁷⁷Lu from the ytterbium target material was more than 98%.

In order to obtain the ¹⁷⁷Lu radionuclide, without a carrier with a high specific activity free of ytterbium impurities, for the manufacture of radiopharmaceuticals of protein origin, at least three-fold separation by the above method is required. And this inevitably leads to a decrease in the radiochemical yield of the final product.

In this regard, we conducted a study on the separation of lutetium-177, carrier free from macroquantities of the target material ytterbium by ion exchange chromatography.

Figures 2-5 depict the ion exchange separation of the radionuclide of 177 Lu carrier free from the irradiated sample of ytterbium target material. For this purpose, DOWEX 50x8 200-400 mesh cation exchange resin, in the H⁺ form, was transferred to the NH₄⁺ form by treatment with a 0,5 M NH₄CI solution with a pH of - 3,5-5,0.

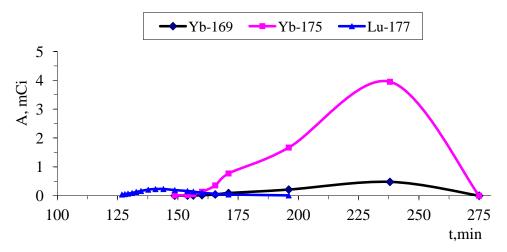
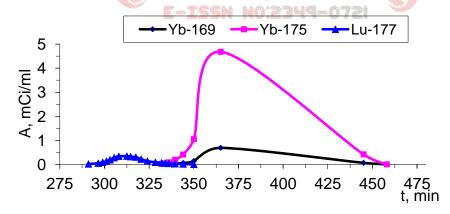



Fig. 2. Elution profile of chromatographic separation of 177 Lu from 6,0 mg of natural Yb target material using DOWEX 50x8 200-400 mesh, NH₄⁺ form chromatographic column. (column size: ID = 6mm, h = 750mm).

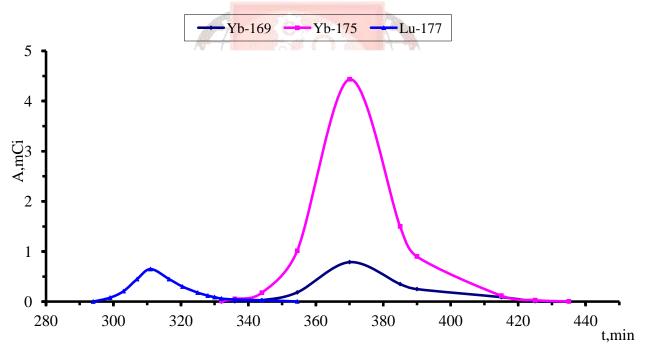
Figure-2. Illustrates desorption of 177 Lu and ytterbium ions. Desorption was performed with a complexone α - hydroxyisobutyric acid in the range of pH =3,5-5,0 in isocratic mode. The amount of the loaded irradiated sample of ytterbium, natural composition and the concentration of the eluent of α -hydroxyisobutyric acid was $C_{Yb} = 6.0$ mg, and $C_{\alpha HIBA} = 0.08$ mol/L, respectively, with the activity of radionuclides $Av_{177Lu} = 1,64$ mCi; $Av_{169Yb} = 10,02$ mCi; $Av_{175Yb} = 136,1$ mCi the elution rate is 0.2 ml/min.

In this case, the sequential desorption of $^{177}\text{Lu}^{3+}$ ions, and then $^{169,175}\text{Yb}^{3+}$, occurred, as a rule, according to the values of the stability of the complex compounds $^{177}\text{Lu:}(\alpha\text{-HIBA})_3 > ^{169,175}\text{Yb:}(\alpha\text{-HIBA})_3$ with the $\alpha\text{-HIBA}$ complexone, which increases with increasing atomic number in the Yb-Lu series, respectively.

Under these conditions of separation of ¹⁷⁷Lu from macro-quantities of ytterbium, was obtained 1,22 mCi of ¹⁷⁷Lu carrier free, which was 74% of the initial activity of lutetium-177.

<u>Fig. 3.</u> Elution profile of chromatographic separation of ¹⁷⁷Lu from 20 mg of natural Yb target solution using DOWEX 50x8 200-400 mesh, NH₄⁺ form chromatographic column.

Figure-3. depicts the desorption of 177Lu and ytterbium ions from a chromatographic column with dimensions $\emptyset = 10$ mm, h = 500mm with a strongly acidic cation exchanger DOWEX 50x8 200-400 mesh, in NH4 + form, be the complexone α -HIBA in a gradient mode. The amount of loaded irradiated sample of ytterbium of natural composition was 20,0 mg. The activities of the loaded initial radionuclides were $Av_{177Lu} = 100$


3,38 mCi; $Av_{169Yb} = 3,37$ mCi; $Av_{175Yb} = 35,3$ mCi respectively. The mode of changing the concentration of the eluent during the elution of radionuclides is shown in table-1.

Under these conditions of separation of ¹⁷⁷Lu, without a carrier, 3,17 mCi of ¹⁷⁷Lu was obtained from macro-quantities of ytterbium, carrier free, and this amounted to 94% of the initial activity of lutetium-177.

Under these conditions of separation of ¹⁷⁷Lu, carrier free, was obtained 3,17 mCi of ¹⁷⁷Lu from macroquantities of ytterbium, and this amounted to 94% of the initial activity of lutetium-177.

No	Time, min	Flow rate	H ₂ O, %	0,132 M α-HIBA,
		of eluent, ml/min		%
1	000,0	0,30	62	38
2	360,0	0,80	40	60
3	600,0	0,80	0	100

Table-1 Mode of gradient of separation of ¹⁷⁷Lu and Yb.

<u>Fig. 4.</u> Elution profile of chromatographic separation of 177 Lu from 50 mg of natural Yb target solution, using DOWEX 50x8 200-400 mesh, NH₄⁺ form chromatographic column. (column size: ID = 10 mm, h = 500mm).

Figure 4 illustrates the separation of 177 Lu and ytterbium from a chromatographic column. Elution was carried out with α -HIBA chelator in a gradient mode. The amount of the loaded irradiated sample of ytterbium of natural composition was 50,0 mg with the activities of the initial radionuclides $Av_{177Lu}=3,9$ mCi; $Av_{169Yb}=2,87$ mCi; $Av_{175Yb}=30,6$ mCi. The eluent gradient mode is shown in Table-2. As can be seen from Figure 4, after elution of lutetium at 350 minutes of the process, the supply of the complexing agent concentration in the chromatograph was increased to 100%, which led to a narrowing of the peak of ytterbium.

Under these separation conditions, 3,5 mCi of ¹⁷⁷Lu was obtained carrier free, which was 91% of the initial activity of lutetium-177.

No	time, min	Flow rate	H ₂ O, %	0,132 M α-HIBA,
		of eluent, ml/min		%
1	000,0	0,30	62	38
2	350	0,60	41,7	58.3
3	600	0,60	0	100

Table-2 Mode of gradient of separation of ¹⁷⁷Lu and Yb.

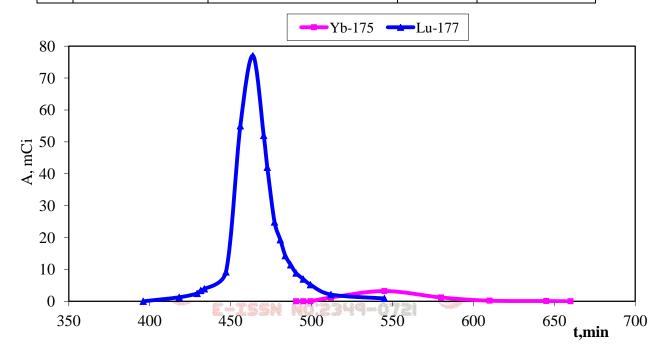


Fig. 5. Elution profile of chromatographic separation of 177 Lu from 70 mg of enriched 176 Yb target solution, using DOWEX 50x8 200-400 mesh, NH₄⁺ form chromatographic column. (column size: ID = 10 mm, h = 500mm).

Figure 5 illustrates the process of separation of 177 Lu from an irradiated ytterbium sample enriched in ytterbium-176, on a chromatographic column, with the complexing agent α -HIBA in a gradient mode. The eluent gradient mode is shown in Table-3. The amount of the loaded irradiated sample of ytterbium was 70,0 mg with the activities of the initial radionuclides $Av_{177Lu} = 871$ mCi; $Av^{175Yb} = 36,7$ mCi.

Table-3 Mode of gradient of separation of ¹⁷⁷Lu and Yb.

№	time, min	Flow rate of	H ₂ O, %	0,132 M α-HIBA,
		eluent, ml/min		%
1	0,000	0,40	62	38
2	600	0,40	0	100

International Engineering Journal For Research & Development

3	500,0	1,0	0	100
	· ·	*		

With these separation conditions, 784 mCi of ¹⁷⁷Lu carrier free was obtained, which was 90% of the initial activity of lutetium-177.

Further, to purify the resulting lutetium-177 from chelator, ammonium ions and other accompanying metal ions, the fractions with lutetium-177 were acidified to pH-2 with concentrated HCI solutions and passed through a chromatographic column with DOWEX 50x8 200-400 mesh, in H^+ form with column size $\emptyset = 5$ mm, h = 10 mm.

Then the column was washed with three column volumes with deionized water, 2,0 mol/l HCI solution and eluted with 4,0 M HCI solution, then the eluate with lutetium-177 was evaporated on a rotary evaporator to dryness and dissolved in the required amount of 0,04 M HCI solution. The measurement results of the finished ¹⁷⁷Lu product are shown in Table 4.

Quality certificate for the preparation Lutetium chloride (¹⁷⁷LuCI₃), carrier free in 0,04 M HCI solution.

 $N_{\underline{0}}$ Analysis name Specification Results of the analysis 1 Colorless, clear solution Appearance Colorless, clear solution 2 Radioactive concentration, mCi/ml >1000 2000 3 92,6 Specific activity, Ci/mg ≥ 50 Radionuclide purity, all gamma emitting 4 impurities, (58Co, 60Co, 65Zn, 54Mn, 59Fe, ¹⁷⁵Yb and all impurities 0 ⁵¹Cr), % \leq 0,01 6 Radiochemical purity, % \geq 99,0 99,6 0,04 0.04 Hydrochloric acid concentration, mol/l 1-2 1,37 рН

Table 4.

CONCLUSION

In this work, we investigated the conditions for the separation of non carrier added of the radionuclide lutetium-177 from macro-quantities of the target material ytterbium by extraction and ion-exchange chromatographic methods.

The most optimal conditions for the separation of the radionuclide lutetium-177, carrier free, turned out to be the method of ion-exchange chromatographic separation with a complexone α -hydroxyisobutanoic acid at pH =3,5-5,0 in a gradient. When separating lutetium-177 from large gram amounts of ytterbium, the main part of ytterbium can be discharged by electrolysis on a mercury cathode, but this is already the subject of research in another work.

Thus, from the obtained results of the work, it can be concluded that the method of separation of the radionuclide lutetium-177, with a high specific activity, is suitable for the synthesis of radiopharmaceuticals based on proteins.

REFERENCES

- SNMMI/NCI Third Targeted Radionuclide Therapy Conference 2019 Monday, December 16, 2019, National Cancer Institute – Shady Grove, Maryland
- 2. Louise Emmett, Kathy Willowson, John Violet, Jane Shin, Ashley Blanksby, Jonathan Lee. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 2017, 64(1), P. 52-60.
- 3. Кодина Г.Е., Красикова Р.Н. Методы получения радиофар м ацев тиче ских препара т ов и радио нуклидных генераторов для ядерной медицины. М., 2014. С. 60.
- 4. В.А. Тарасов, Е.Г. Романов, Р.А. Кузнецов. СРАВНИТЕЛЬНЫЙ АНАЛИЗ СХЕМ РЕАКТОРНОЙ НАРАБОТКИ ЛЮТЕЦИЯ-177. Известия Самарского научного центра Российской академии наук, 2013, т. 15, №4(5), С. 1084-1090.
- Отчет НИР Института Ядерной Физики Академии Наук Республики Узбекистан. № Гос рег. 01.2000.09698, Ташкент 2002, 40 с.

